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Summary
Background Early detection of cancer aims to reduce cancer deaths. Unfortunately, many established cancer screening
technologies are not suitable for use in low- and middle-income countries (LMICs) due to cost, complexity, and
dependency on extensive medical infrastructure. We aimed to assess the performance and robustness of a protein
assay (OncoSeek) for multi-cancer early detection (MCED) that is likely to be more practical in LMICs.

Methods This observational study comprises a retrospective analysis on the data generated from the routine clinical
testings at SeekIn and Sun Yat-sen Memorial Hospital. 7565 participants (954 with cancer and 6611 without) from the two
sites were divided into training and independent validation cohort. The second validation cohort (1005 with cancer and 812
without) was from Johns Hopkins University School of Medicine. Patients with cancer prior to therapy were eligible for
inclusion in the study. Individuals with no history of cancer were enrolled from the participating sites as the non-cancer
group. One tube of peripheral blood was collected from each participant and quantified a panel of seven selected protein
tumour markers (PTMs) by a common clinical electrochemiluminescence immunoassay analyser. An algorithm named
OncoSeek was established using artificial intelligence (AI) to distinguish patients with cancer from those without cancer by
calculating the probability of cancer (POC) index based on the quantification results of the seven PTMs and clinical
information including sex and age of the individuals and to predict the possible affected tissue of origin (TOO) for
those who have been detected with cancer signals in blood.

Findings Between November 2012 and May 2022, 7565 participants were enrolled at SeekIn and Sun Yat-sen
Memorial Hospital. The conventional clinical method, which relies only on a single threshold for each PTM,
would suffer from a high false positive rate that accumulates as the number of markers increased. OncoSeek was
empowered by AI technology to significantly reduce the false positive rate, increasing the specificity from 56.9%
(95% confidence interval [CI]: 55.8–58.0) to 92.9% (92.3–93.5). In all cancer types, the overall sensitivity of
OncoSeek was 51.7% (49.4–53.9), resulting in 84.3% (83.5–85.0) accuracy. The performance was generally
consistent in the training and the two validation cohorts. The sensitivities ranged from 37.1% to 77.6% for the
detection of the nine common cancer types (breast, colorectum, liver, lung, lymphoma, oesophagus, ovary,
pancreas, and stomach), which account for ∼59.2% of global cancer deaths annually. Furthermore, it has shown
excellent sensitivity in several high-mortality cancer types for which routine screening tests are lacking in the
clinic, such as the sensitivity of pancreatic cancer which was 77.6% (69.3–84.6). The overall accuracy of TOO
prediction in the true positives was 66.8%, which could assist the clinical diagnostic workup.

Interpretation OncoSeek significantly outperforms the conventional clinical method, representing a novel blood-
based test for MCED which is non-invasive, easy, efficient, and robust. Moreover, the accuracy of TOO facilitates
the follow-up diagnostic workup.
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Research in context

Evidence before this study
Many patients with cancer can be cured if diagnosed early and
treated effectively. Yet cancer remains an important public
health issue worldwide, especially in low- and middle-income
countries (LMICs) due to lack of resources and limited
healthcare infrastructure. At present the majority of high-
mortality cancers do not have standard-of-care screening
methods available. Therefore, a non-invasive and efficient
multi-cancer early detection (MCED) test is a highly unmet
need. Importantly, the test should be simple and affordable,
which is also suitable for LMICs.

Added value of this study
Here, we developed and validated a blood-based MCED test
named OncoSeek. This assay integrated the measurement of a
panel of seven selected protein tumour markers (PTMs) and
clinical information of the individual for MCED and predicting
affected tissue of origin (TOO), empowered by artificial
intelligence (AI) technology. This large study (n = 9382)

containing more than nine common cancer types and
dominated by early-stage patients (63.2% stage I and II)
showed that the performance of OncoSeek was significantly
superior to the conventional clinical method. The test
achieved a sensitivity of 51.7% with a specificity of 92.9%,
resulting in 84.3% accuracy, with 49.5% sensitivity in stage I
and II patients. In addition, the overall accuracy of TOO
prediction in the true positives was 66.8%.

Implications of all the available evidence
If used alongside the existing screening approaches, OncoSeek
could offer the potential to find more types of cancer at
earlier stages using one tube of blood, to improve patient
outcomes by treating the disease when it is typically most
responsive to therapy, and ultimately to have a notable
impact on public health. Further large-scale prospective
studies are required to provide more evidence to support the
application of OncoSeek in population-scale cancer screening.
Introduction
Cancer is an important public health issue worldwide.
The global cancer burden is increasing rapidly, and
nearly 19.3 million new cases and 10.0 million cancer
deaths were estimated in 2020. It is estimated that more
than two-thirds of annual cancer deaths in the world
occur in LMICs. The global cancer burden is expected to
be 28.4 million cases in 2040, a 47% rise from 2020,
with a larger increase in transitioning (64%–95%)
versus transitioned (32%–56%) countries due to de-
mographic changes, although this may be further
exacerbated by increasing risk factors associated with
limited medical infrastructure in LMICs.1 It is well
acknowledged that cancer early detection offers a higher
cure rate and 5-year survival rate as well as a reduction
in treatment cost and loss of economic productivity.2

Various cancer screening techniques are currently
available in clinical practice. Examples include low-dose
computed tomography (LDCT) for lung cancer
screening,3 mammogram used to detect breast cancer,4

HPV test or cytology combined with colposcopy for
early detection of cervical cancer,5 faecal occult blood
test (FOBT) combined with colonoscopy for colorectal
cancer screening,6 and prostate-specific antigen (PSA)
for prostate cancer.7 However, the high cost of these
screening methods and their need for specialised
infrastructure and skilled technicists limit their appli-
cation, and this is why there are alternatives of screening
tests in LMICs: visual inspection with acetic acid (VIA)
for cervical cancer and clinical breast examination (CBE)
for breast cancer screening. Moreover, these methods
are individually designed for screening for specific
cancer types, hindering their widespread use as
screening tools. In addition, liquid biopsy methods,
which detect blood-based analytes such as cancer-
derived DNA, are now being adopted in human medi-
cine to simultaneously screen for multiple types of
cancer; these MCED tests, such as Galleri,8 Cancer-
SEEK,9,10 and SeekInCare,11 represent a paradigm shift
in cancer screening and promise to significantly in-
crease the number of patients with cancer that are
detected at earlier stages. However, these tests are not
suitable for using in LMICs due to cost, complexity, and
dependency on high-end infrastructure and a rigorous
laboratory. Taken together, these factors contribute to
the fact that cancer is often diagnosed at a later stage
and to inequalities in health care. In order to perform
large-scale cancer screening among apparently healthy
individuals in the future, especially among the popula-
tion in LMICs, the development and validation of a
more general, robust, and affordable MCED test are
essential.

Immunological measurement of blood-based PTMs
has been performed over decades in clinical for cancer
screening of apparently healthy individuals on large-
scale; for example, alpha-fetoprotein (AFP) for
www.thelancet.com Vol 61 July, 2023
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hepatocellular carcinoma,12 CA125 for ovarian
cancer,13–15 CA15-3 for breast cancer,16,17 CA19-9 for
pancreatic cancer,18 CA72-4 for ovarian cancer,19,20 car-
cinoembryonic antigen (CEA) for cancers in digestive
tract,21 and CYFRA 21-1 for breast carcinoma.22 Such
methods have significant advantages including their
non-invasive nature, automation, and relatively low cost
compared with many other clinical detection methods
(endoscopy, imaging, etc.).23 However, the low sensi-
tivity of these methods for early cancer detection limits
their widespread use for screening purposes in a gen-
eral population setting.

Previous studies have shown that PTM panels are
diagnostically superior to single marker for the early
detection of colorectal cancer,24,25 lung cancer,26 breast
cancer,27 liver cancer,28 gastric cancer,29,30 pancreatic
cancer,31 ovarian cancer,32 and oesophagus cancer.33

Several reports have also demonstrated that a com-
bined PTM panel could be used for detecting several
cancer types at the same time.34,35 However, different
cancer types normally show different serological char-
acteristics. Test results can also become more complex
as the sample size increases, and traditional statistical
methods may not be able to handle such big data. In
addition, conventional clinical methods detect multiple
PTMs at the same time and use a single threshold to
evaluate the results, which may cause the accumulation
of false-positive rates and lead to unnecessary clinical
diagnostic workups. Hence, they were not suitable for
asymptomatic large-scale population screening. AI is a
good analytical method for solving classification chal-
lenges by identifying implicit patterns from complex
data. Over the last decade, the significant contribution of
AI techniques to this advanced technology has played a
critical role in medicine and healthcare research. AI is
Fig. 1: Schematic representation of clinical implementation workflow
the individual in a cell-free DNA blood collection tube and mailed to the c
room temperature for seven days which makes it remote accessible as long
by centrifugation in the lab, PTM levels were measured by an electrochemi
AI to distinguish cancer from non-cancer individuals by calculating the p
PTMs and clinical information including sex and age of the individuals. Th
been detected with a cancer signal. PTMs, protein tumour markers. ECLI
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considered a valuable tool in transforming the future of
healthcare and precision oncology. Several novel algo-
rithms have shown promising results for the accurate
detection and characterisation of suspected lesions.36–38

In this study, we assessed the performance and
robustness of a protein assay named OncoSeek for
MCED by integrating the measurement of a panel of
seven selected PTMs and clinical information of the
individuals, dramatically empowered by AI technology,
which is more practical in LMICs (Fig. 1).
Methods
Participants
591 patients with cancer and 1055 non-cancer in-
dividuals were recruited as SeekIn laboratory-developed
test (training cohort). 363 patients with cancer and 5556
non-cancer individuals were enrolled in Sun Yat-sen
Memorial Hospital, Sun Yat-sen University as inde-
pendent validation cohort 1. This observational study
was a retrospective analysis on the data generated from
the routine clinical testings at SeekIn and Sun Yat-sen
Memorial Hospital from November 2012 to May 2022.
The data were anonymised and all participants provided
written informed consent upon enrolment. It was
approved by the ethics committee of Sun Yat-sen Me-
morial Hospital (SYSKY-2023-435-01). Eligible patients
with cancer were diagnosed with pathological confir-
mation and treatment-naïve prior to blood draw. Cancer
stage was assigned by the attending physicians accord-
ing to the American Joint Committee on Cancer (AJCC)
Staging Manual (8th edition).39 Non-cancer individuals
had no history of cancer. Cancer participants were also
excluded for a prior diagnosis of cancer. Clinical data
and PTMs quantification data of 1005 patients with
of OncoSeek test. 8 ml peripheral blood sample was collected from
entral lab. This is a special tube that proteins are stabilised stored at
as there’s a local nurse who can draw blood. After plasma separation
luminescence immunoassay analyser. OncoSeek was established using
robability of cancer (POC) index based on the plasma levels of seven
en using another model to predict the possible affected TOO who has
, electrochemiluminescence immunoassay. TOO, tissue of origin.
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cancer and 812 non-cancer individuals previously pub-
lished by Cohen et al. were included as independent
validation cohort 2 for analysis in this study.9

Quantification of PTMs
Peripheral blood from Sun Yat-sen Memorial Hospital
was collected using a serum collection tube (BD Bio-
sciences, San Jose, USA). Serum was separated within
4∼6 h using a centrifuge at 1300×g for 10 min at 4 ◦C.
Samples from SeekIn were collected using a Cell-Free
DNA BCT (Streck, La Vista, USA). Plasma samples
were separated by centrifugation at 1600×g for 10 min at
4 ◦C within 3∼5 days. A total of 500 μL of plasma or
serum from each blood sample was used to measure the
levels of seven designated PTMs, including AFP,
CA125, CA15-3, CA19-9, CA72-4, CEA, and CYFRA
21-1, using Roche cobas e411/e601 analyser (Roche
Diagnostics GmbH, Mannheim, Germany) and
commercially available reagent kits following manufac-
turer’s instructions. The selection of these seven protein
markers was based on our previous publication.40 The
cut-off values for each biomarker were as follows: 5.8
IU/ml for AFP, 35.0 U/ml for CA125, 26.4 U/ml for
CA15-3, 27.0 U/ml for CA19-9, 6.9 U/ml for CA72-4,
4.7 ng/ml for CEA, and 3.3 ng/ml for CYFRA21-1, as
recommended by the manufacturer, which is set in
advance based on a large-scale normal population. This
test was calibrated as per the manufacturer’s in-
structions using a two-point calibration, and quality
control was performed. Plasma samples of independent
validation cohort 2 from Johns Hopkins University
School of Medicine used the Bioplex 200 platform (Bio-
Rad, Hercules CA) for quantification of only six PTMs
without CA72-4.9

Construction of the models of cancer detection and
TOO prediction
The study utilised seven protein markers and two clin-
ical characteristics (age and sex) as input features for an
AI algorithm. Supplementary Figure S1 showed the
detailed modelling process. The whole method includes
two parts: one is a cancer detection model to determine
whether the individual has cancer risk; another one is a
TOO model for cancer location for tested positive
groups. The first part is the development and validation
of the cancer detection model. Different AI methods,
including Gradient Boosting Machine (GBM), General-
ised Linear Model (GLM), Random Forest (RF), and
Support Vector Machine (SVM), were employed to
create the model that could differentiate between cancer
and non-cancer individuals. For the assessments, we
compared the area under the curve (AUC) values and
sensitivity/specificity of different models by the R
package “pROC (1.18.0)”. Based on the performance of
the model on the training set and two independent
validation sets and the complexity of the model, as well
as the positive correlation between the risk of cancer and
protein expression, the GLM algorithm was finally
chosen to establish the model to distinguish cancer
from non-cancer individuals. The final model was built
using GLM and 10-fold cross-validation was repeated 30
times. The average prediction value from these GLM
models was defined as the probability of cancer (POC).
POC value at 90.0% specificity was selected as cut-off
value. When the test result was greater than cut-off, it
indicated that cancer signals were detected. Otherwise,
no cancer signal was detected.

For the prediction of TOO, the true positive patients
of three cohorts were used to develop the model through
the RF and GBM methods according to the publica-
tion.9,41 Due to imbalanced sample size for each cancer
type, the downsampling method was employed to bal-
ance sample size of each cancer type. The top two or-
gans with the highest prediction probability were
considered as the potential TOO.

Statistical analysis
The Buderer’s method42 was employed to estimate the
sample size for our study. The objective was to achieve a
sensitivity of 50% at a specificity of 90%. The confidence
level was set at 95%, and the ratio of cases to controls
was 1:2. Based on the calculations, n1 and n2 were
determined to be 1165 and 207, and the larger value was
chosen as the number of samples. Accounting for a 5%
dropout rate, the final sample size was determined to be
1227. As we were able to collect a total of 1646 samples
in the training cohort, that exceeded the required sam-
ple size. This larger sample size should provide suffi-
cient statistical power for the study and enhance the
reliability of the results.

We used the most common approach known as One-
at-a-time (OAT) to perform the sensitivity analysis. We
systematically excluded one PTM marker at a time while
keeping the other PTM markers unchanged. By
employing the same method (i.e., GLM), we calculated
the sensitivity achieved when a particular PTM marker
was excluded. This process was repeated for each of the
remaining PTM markers in a similar fashion.

We conducted post-hoc subgroup analysis43 to
compare the POC values between patients with cancer
and individuals without cancer, considering factors such
as gender and age. Additionally, we compared the POC
values among individuals without cancer within three
different source cohorts.

All statistical analyses were performed using R sta-
tistical software (https://www.r-project.org, version
4.1.2). pROC package version 1.18.0 was used to esti-
mate the performance of the receiver operating charac-
teristic in classifying cancer versus healthy individuals.
We conducted Shapiro–Wilk tests on each protein
biomarker of the healthy individuals in the training
cohort and all P-values were less than 0.0001, indicating
that the data is not a Gaussian distribution. This can
also be observed through QQ plots, such as the example
www.thelancet.com Vol 61 July, 2023
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in Supplementary Figure S2 depicting the QQ plot of
AFP expression from the healthy individuals. So, the
Wilcoxon rank-sum test was used to compare the
expression of each protein marker between the patients
with cancer and the healthy individuals. Sensitivity,
specificity, and predictive values were calculated by epiR
software package version 2.0.40 (https://cran.r-project.
org/web/packages/epiR/index.html). We also applied
Delong test for statistical comparison of the AUCs.

Role of the funding source
The funder had no role in study design, data collection,
data analyses, interpretation, or writing of the report.
Results
Study design and participants’ demographic
characteristics
Between November 2012 and May 2022, 7565 partici-
pants were enrolled at SeekIn and Sun Yat-sen Memo-
rial Hospital. The demographics and clinical
characteristics of all participants are summarised in
Table 1. Samples were divided into training (n = 1646,
the samples from SeekIn) and independent validation
cohort 1 (n = 5919, the samples from Sun Yat-sen Me-
morial Hospital). Independent validation cohort 2
Training cohort (SeekIn) Indep
(SYSM

Cancer Non-cancer Cance

（n = 591） （n = 1055） （n =

Platform Roche cobas e411 Roche

Sample type Plasma Serum

Age

Mean（SD） 55.3 (13.6) 47.8 (12.4) 58.5 (

≤55 years, n (%) 289 (48.9%) 788 (74.7%) 143 (

＞55 years, n (%) 302 (51.1%) 267 (25.3%) 220 (

Sex

Female, n (%) 256 (43.3%) 543 (51.5%) 140 (

Male, n (%) 335 (56.7%) 512 (48.5%) 223 (

Cancer type

Lymphoma, n (%) 159 (26.9%) 0 (

Liver, n (%) 128 (21.7%) 72 (

Breast, n (%) 66 (11.2%) 16 (

Colorectum, n (%) 62 (10.5%) 46 (

Stomach, n (%) 56 (9.5%) 25 (

Lung, n (%) 41 (6.9%) 155 (

Pancreas, n (%) 17 (2.9%) 15 (

Oesophagus, n (%) 10 (1.7%) 11 (

Ovary, n (%) 5 (0.8%) 23 (

Others, n (%) 47 (8.0%) 0 (

SYSMH, Sun Yat-sen Memorial Hospital, Sun Yat-sen University. JHUSM, Johns Hopkins

Table 1: Clinical and demographic characteristics of participants.

www.thelancet.com Vol 61 July, 2023
(n = 1817) was from Johns Hopkins University School
of Medicine. The cancer group included 496 cases of
colorectal cancer, 300 cases of lung cancer, 291 cases of
breast cancer, 244 cases of liver cancer, 159 cases
of lymphoma, 149 cases of stomach cancer, 125 cases of
pancreatic cancer, 82 cases of ovarian cancer, 66 cases of
oesophageal cancer and 47 cases of cancers of the other
origins. It should be noted that the selection of these
cancer patients was not random, and there might be
potential bias across different cancer types. As a case–
control study to evaluate an MCED test, we intention-
ally selected the cancer types which were prevalent
globally.1

The performance of the conventional clinical
method for cancer detection based on the PTMs
Except for the samples from Sun Yat-sen Memorial
Hospital, which were serum, the other two cohorts had
plasma samples. The SeekIn set and Sun Yat-sen Me-
morial Hospital set are using Roche cobas analysers,
while the third cohort from Johns Hopkins University
School of Medicine published data used the Bioplex
200 platform. Considering that the data from Johns
Hopkins University only contained six tumour markers
and lacked the value of CA72-4, we used the mean
value of CA72-4 from the non-cancer sample group in
endent validation cohort 1
H)

Independent validation cohort 2
(JHUSM)

r Non-cancer Cancer Non-cancer

363） （n = 5556） （n = 1005） （n = 812）

cobas e601 Bio-Rad Bioplex 200 platform

Plasma

16.2) 53.8 (17.4) 62.9 (12.4) 49.3 (19.5)

39.4%) 2840 (51.1%) 279 (22.8%) 408 (50.2%)

60.6%) 2716 (48.9%) 726 (72.2%) 404 (49.8%)

38.6%) 2495 (44.9%) 543 (54.0%) 378 (46.6%)

61.4%) 3061 (55.1%) 462 (46.0%) 434 (53.4%)

0.0%) 0 (0.0%)

19.8%) 44 (4.4%)

4.4%) 209 (20.8%)

12.7%) 388 (38.6%)

6.9%) 68 (6.8%)

42.7%) 104 (10.3%)

4.1%) 93 (9.3%)

3.0%) 45 (4.5%)

6.3%) 54 (5.4%)

0.0%) 0 (0.0%)

University School of Medicine.
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the training cohort to replace the missing value. The
values of these seven PTMs for the training cohort are
shown in Fig. 2. The performance of these seven PTMs
in individual tumour types in the training cohort is
depicted in Supplementary Table S1. Almost all PTMs
had a specificity of more than 95.0%, except CA72-4,
which was 85.7%, whereas the sensitivity of an iso-
lated PTM for the detection of individual malignancies
was very low (ranging from 0 to 70.6%, the median
value was 16.1%). In addition, when a single tumour
marker was analysed, the specificity was high, while
multiple tumour markers were analysed according to
the conventional clinical method, and the false-positive
rate was cumulative. The conventional clinical
method mentioned here is a method based on the
quantification of PTMs and assesses the results merely
by a single threshold, which is based on pre-
determined reference ranges for each PTM recom-
mended by the manufacturer [i.e., the manufacturer-
suggested cut-off value (MSCV)]. The sensitivity
elevated when the number of PTMs increased in the
conventional clinical method but, as a trade-off, the
specificity decreased at the same time (Supplementary
Figure S3). A total of 705 cases had at least one positive
biomarker. The data in Supplementary Table S2
showed that simultaneous detection of these seven
PTMs in all samples, the specificity was only 69.4%
(95% CI: 66.5%–72.2%). Taken together, these results
indicated that the conventional clinical method using
multiple tumour marker panels has a very high false-
positive rate.
Fig. 2: Quantification of PTMs in different cancer types. Quantification
(x-axis). The black horizontal lines are cut-off values that are recommend
value <0.001.
The performance characteristics comparison
between OncoSeek and the conventional clinical
method
Considering the high false-positive rate of the conven-
tional clinical method, a highly specific and robust
MCED method is very essential in clinic. An algorithm
named OncoSeek was established using AI to distin-
guish cancer from non-cancer individuals by calculating
the probability of cancer (POC) index based on the
expression of the seven PTMs and clinical basic infor-
mation including sex and age of the individuals and to
predict the possible affected TOO for those with a high-
risk cancer signal. Four different machine learning al-
gorithms (GBM, GLM, RF, and SVM) are adopted, no
matter whether GBM (AUC = 0.869), GLM
(AUC = 0.868), or RF (AUC = 0.869) algorithm was used,
the model has similar performance, but all of them
significantly outperformed the SVM (AUC = 0.817) al-
gorithm across these three cohorts (Supplementary
Figure S4A and B). However, GBM and RF are more
complex than GLM models because they are composed
of multiple decision trees and they take into consider-
ation the correlations between features and their in-
teractions. As a result, these algorithms are often able to
capture more complex relationships and carry a greater
risk of overfitting. Finally, the GLM algorithm was cho-
sen to establish the OncoSeek model as a single locked
algorithm to apply across the three cohorts, which could
distinguish cancer from non-cancer controls in the
training (AUC = 0.868) and the two independent vali-
dation cohorts (AUC = 0.744 and 0.818, respectively;
value of each PTM (y-axis) based on healthy or individual cancer types
ed by the manufacturer. ** indicates P-value <0.01, *** indicates P-

www.thelancet.com Vol 61 July, 2023
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P < 0.001 by Delong test; Fig. 3A). With the specificity at
∼90.0%, the sensitivity across these three cohorts was
58.2% (training cohort, 95% CI: 54.1%–62.2%), 47.4%
(independent validation cohort 1, 95% CI: 42.1%–

52.7%), and 49.3% (independent validation cohort 2,
95% CI: 46.1%–52.4%), respectively (Supplementary
Table S3). Based on the subgroup analysis, we
observed no significant difference in the POC values
among individuals without cancer within any two out of
the three cohorts (Wilcoxon rank-sum test, P > 0.05).
Meanwhile, we found a significant increase in the POC
values of patients with cancer compared to individuals
without cancer across different gender and age groups
(Wilcoxon rank-sum test, P < 0.001). Among these
tumour types, pancreas had the highest sensitivity of
77.6% (95% CI: 69.3%–84.6%), followed by ovary [68.3%
(95% CI: 58.5%–79.5%)], liver [63.1% (95% CI: 56.7%–

69.2%)], lung [52.0% (95% CI: 46.2%–57.8%)], stomach
[50.3% (95% CI: 42.0% to 58.6%)], colorectum [47.4%
(95% CI: 42.9%–51.9%)], lymphoma [42.8% (95% CI:
35.0%–50.8%)], oesophagus [40.9% (95% CI: 29.0%–

53.7%)], and breast [37.1% (95% CI: 31.5%–42.9%)]. The
sensitivity basically increased with increasing clinical
stage [stage I (n = 356), 44.4% (95% CI: 39.1%–49.7%);
stage II (n = 629), 52.5% (95% CI: 48.5%–56.4%); stage
III (n = 440), 62.0% (95% CI: 57.3%–66.6%); stage IV
(n = 134), 61.9% (95% CI: 53.2%–70.2%)]. The sensi-
tivities of OncoSeek in individual tumour types and each
cancer stage are depicted in Fig. 3B and C. The proba-
bilistic nature of the approach used to determine a pos-
itive sample was evident from Supplementary Figure S5,
where each panel represented the sensitivity of
Fig. 3: The performance of OncoSeek assay. (A) The receiver operating
the training and independent validation cohorts. The area under the curv
vertical line in the ROC figures represents a 90.0% specificity. (B) The sens
cancer class based on individual cancer classes (x-axis), including multiple c
bars indicate 95% CI. The numbers in parentheses indicate the samples f
stage. Sensitivity (y-axis) based on individual cancer stage (x-axis), bars in
each clinical stage.

www.thelancet.com Vol 61 July, 2023
OncoSeek when a specific protein marker was excluded
from the analysis. The difference in sensitivity,
compared to that achieved by OncoSeek, reflected the
relative contribution of each PTM marker to the perfor-
mance of OncoSeek test. To compare the performance of
the conventional clinical method and OncoSeek, we
evaluated the sensitivity and specificity of both methods
in all samples. The sensitivity of the two methods was
63.8% (conventional clinical method, 95% CI: 61.6%–

65.9%) and 51.7% (OncoSeek, 95% CI: 49.4%–53.9%)
respectively, but the specificity was significantly
different, 56.9% (conventional clinical method, 95% CI:
55.8%–58.0%) and 92.9% (OncoSeek, 95% CI: 92.3%–

93.5%), respectively (Table 2). This reflected that Onco-
Seek had a relatively high specificity level, which was
very important for a population screening test and
indicated that it could avoid burdening the population
with false-positive results. Meanwhile, OncoSeek ach-
ieved 84.3% (95% CI: 83.5%–85.0%) accuracy. We then
evaluated the performance of OncoSeek and each PTM
in individual tumour types and the data is reported in
Fig. 4, which indicated that tumour markers had TOO
information. Furthermore, OncoSeek has shown excel-
lent performance in several high-mortality cancer types
for which routine screening tests are lacking in the
clinic, such as the AUC value of pancreatic cancer which
was 0.911.

Predicting affected TOO
Most liquid biopsies are unable to identify affected TOO
in patients who test positive, especially those based on
genetic mutations, because the same gene mutations
characteristic (ROC) curve evaluated the performance of OncoSeek in
e (AUC) of the three cohorts was depicted in the figure. The dotted
itivity of OncoSeek in individual tumour types. Sensitivity (y-axis) by
ancer types. Cancer classes are ordered based on sensitivity reducing,
or each cancer class. (C) The sensitivity of OncoSeek in each clinical
dicate 95% CI. The numbers in parentheses indicate the samples for
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Conventional clinicalmethod OncoSeek

Cancer Non-cancer Cancer Non-cancer

Predict cancer 1249a 3200a 1012 527

Predict non-cancer 710 4223 947 6896

Sensitivity (95% CI) 63.8% (61.6%, 65.9%) 51.7% (49.4%, 53.9%)

Specificity (95% CI) 56.9% (55.8%, 58.0%) 92.9% (92.3%, 93.5%)

PPV (95% CI) 28.1% (26.8%, 29.4%) 65.8% (63.3%, 68.1%)

NPV (95% CI) 85.6% (84.6%, 86.6%) 87.9% (87.2%, 88.6%)

PPV, Positive predictive value. NPV, Negative predictive value. aIndividuals with at least one of the markers
included in the panel showing values above the cut-off point were considered as being positive.

Table 2: The comparison of performance between the conventional clinical method and OncoSeek.
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drive multiple tumour types. However, a critical attri-
bute of a blood-based multi-cancer detection test is the
ability to localise the TOO to direct the diagnostic
workup. Based on the tissue-specific characteristics of
PTMs, we used supervised AI algorithm to predict the
underlying cancer type in patients with true positive
tests. We then used this algorithm to study 976 patients
Fig. 4: Receiver operating characteristic (ROC) curves of these seven P
curve (AUC) of these seven PTMs and OncoSeek were depicted in the fi

specificity.
with cancer scoring true positives from these three co-
horts in the OncoSeek test to predict the possible
affected organ system. The overall accuracy of the top
two most possible organ systems was 66.8% (Fig. 5).
Discussion
Herein, we report an efficient, easier, and affordable
MCED approach, named as OncoSeek, which is based
on seven PTMs and clinical information of the indi-
vidual and empowered by AI. In this large multicentre
study (n = 9382) containing more than nine cancer types
and dominated by early-stage patients (63.2% stage I
and II), 51.7% sensitivity was achieved at 92.9% speci-
ficity, resulting in 84.3% accuracy. The accuracy of the
top two most possible organ systems was 66.8%. The
validation cohort 1 was using serum. The validation
cohort 2 was a non-Chinese cohort (a mix of Caucasians,
Asians, blacks and Latinos), only had six PTMs and was
on Bioplex 200. All these variables (sample type, plat-
form, number of PTMs and race) demonstrated the
TMs and OncoSeek in individual cancer types. The area under the
gure. The dotted vertical line in the ROC figures represents a 90.0%

www.thelancet.com Vol 61 July, 2023
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Fig. 5: TOO accuracy by individual cancer type. Confusion matrices representing the accuracy of TOO localisation. Agreement between the
actual (x-axis) and predicted (y-axis) TOO per sample using the OncoSeek model was depicted. Colour corresponds to the proportion of
predicted TOO calls. Included 976 participants were those with cancer predicted as having cancer at 92.9% specificity.
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robustness of OncoSeek and would also make our
findings generalisable.

A wealth of literature has evaluated the utility of
PTMs in cancer detection and monitoring.12–22 These
tests are now common practice in clinics. Our results
proved that individual PTMs could contribute to cancer
detection. For example, AFP, as a specific marker for
liver cancer,12 resulting a sensitivity of 62.5% at a spec-
ificity of 95.4% in the training cohort. At the same time,
CEA as a multi-cancer PTM,44 and its quantitative level
in multiple tumour types is significantly higher than
that in the non-cancer group. Almost all PTMs had high
specificity, whereas the sensitivity of an isolated PTM
for the detection of individual malignancies was very
low. Overall, the performance of each biomarker
included in our study, when analysed individually, was
similar to what has previously been reported in the
literatures.12,15,17–19,22

However, tumour heterogeneity is a well-known
concept in tumour biology, which is also an important
reason for the difficulty of tumour diagnosis and treat-
ment.45 Therefore, multiple cancer detection cannot be
based on a single tumour marker. More and more
literature has confirmed that the performance of PTM
panels is better than that of single tumour marker.24–33

However, the conventional clinical method usually
uses a single threshold (i.e., MSCV), which is set in
advance based on a large-scale normal population. In a
selected PTM panel, when any one of the tumour
markers exceeds the cut-off value, the individual is
considered to be positive. Our results, as well as previ-
ous literature,24 suggest that false-positive rates accu-
mulate as the number of tumour markers increases. In
all samples of these three cohorts, the sensitivity of the
www.thelancet.com Vol 61 July, 2023
conventional clinical method based on MSCV was
63.8%, but the specificity was only 56.9%. The conven-
tional clinical method, which simply combines the re-
sults of different tumour markers tests, would generally
have a cumulative false-positive rate higher than the
individual tests, which led to unnecessary imaging,
invasive procedures, or other diagnostic workups and
potentially increasing unnecessary medical costs
and anxiety. By contrast, OncoSeek used AI to learn and
identify specific patterns of tumour markers and clinical
factors and their interdependencies to distinguish can-
cer from non-cancer individuals, thus greatly increasing
its specificity, and achieving a specificity of 92.9%. A
sufficiently high specificity to ensure a low rate of false
positives is a fundamental characteristic of asymptom-
atic population screening. AI algorithms play a key role
in our approach, which makes it possible to do multiple
cancer screening based on PTMs. Recent reports have
demonstrated that AI has already been leveraged to
improve the performance of different liquid biopsy as-
says and might facilitate their future integration into the
clinical workflow,41,46 which is based on its excellent
ability to handle complex interactions between large
numbers of data and information. We have tried several
AI algorithms including GBM, GLM, RF, and SVM.
There was no difference in the performance of the first
three algorithms, but the performance of SVM was
significantly worse than others. The SVM algorithm was
therefore excluded while the remaining three algo-
rithms all have different advantages, disadvantages, and
characteristics. GBM and RF are two machine learning
algorithms based on decision trees, while a model based
on a normal distribution is typically referred to as a
GLM. GBM and RF are more complex than GLM
9
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models because they are composed of multiple decision
trees and they take into consideration the correlations
between features and their interactions. As a result,
GBM and RF algorithms are often able to capture more
complex relationships in the data and perform better in
prediction compared to GLM models. Moreover, GBM
and RF algorithms also carry a greater risk of overfitting,
due to their complexity causing them to better adapt to
the training data, leading to a decline in performance on
test data. Therefore, we finally used the GLM algorithm
for modelling.

Our study included two independent validation co-
horts, which may lower the possibility of overestimation
of the performance. With the specificity at ∼90.0%, the
sensitivity of OncoSeek across the three cohorts was
58.2%, 47.4%, and 49.3%, respectively, which was
similar, although the sample types and the platforms of
these three cohorts were different (see Table 1), even in
independent validation cohort 2, only containing six
tumour markers thereinto. In addition, the sample size
of the whole study reached nearly 10,000 cases, which is
a very large data set. These data strongly proved that our
method was robust. In addition, though the overall
sensitivity of the OncoSeek test was only 51.7%, less
than that of previously reported single-cancer detection
tests,47,48 as an MCED test, the overall incidence of
cancer was higher than that of any single cancer. The
nine cancer types studied here account for ∼59.2% of
global cancer deaths annually.1 This means that multiple
cancer tests with moderate sensitivity may yield higher
cancer detection rates than single cancer tests with very
high sensitivity. Furthermore, the OncoSeek assay
showed a relatively high sensitivity for several cancers
for which there is no clinical screening method. For
example, the OncoSeek assay showed a sensitivity of
77.6% for pancreatic cancer, which has a high mortality.
The application of this assay may lead to earlier detec-
tion of pancreatic cancer and improve the therapeutic
effect, thus potentially reducing mortality.

Another part of the data in this study is the accuracy
of predicting affected organ systems. Accurate TOO
localisation is critical to direct the diagnostic workup; in
its absence, patients with a positive test may be sub-
jected to unnecessary diagnostic tests. TOO is a multiple
classification and non-linear relationship between the
independent (cancer types) and the dependent (PTMs
expression) variables. However, SVM and GLM are
linear classifiers and often used for binary classification,
so only GBM and RF were used to predict TOO in our
study. Meanwhile, the publications of CancerSEEK and
DELFI assays also used RF and GBM algorithms for the
prediction of the cancer type, respectively.9,46 We found
that the overall accuracy of top-two most possible organ
systems from GBM was 60.9%, lower than RF (66.8%).
Taken together, we finally chose RF for TOO analysis.
The function of TOO may also be helpful for some pa-
tients with unknown primary lesions.
In addition, it should be emphasised that the Onco-
Seek method also has the following advantages. This is
an MCED method that could detect multiple cancer
types at once. PTMs are quantified by an automated
electrochemiluminescence immunoassay analyser that
is easy to perform and does not require sophisticated
training and expertise to be deployed. The turnaround
time of this test is very fast. It takes less than 10 min to
quantify these seven tumour markers, making it
possible to report on the same day samples are received.
The newly developed MCED assays, such as Galleri,8 can
achieve similar sensitivity (51.5%) and higher specificity
(99.5%). However, they require high-end and complex
infrastructure like next-generation sequencing in-
struments, and are very expensive (∼$1000). Based on
these factors, OncoSeek assay is easier to implement in
large-scale populations, even in LMICs.

We would like to acknowledge some limitations in
this study. First, a prospective study shall provide more
compelling evidence to support the application of
OncoSeek in clinic. Second, the accuracy of TOO needs
to be further improved to limit the scope, cost, and
complexity of clinical evaluation of asymptomatic pa-
tients. Third, the selection of these patients was not
random in this study, and the percentage of cancers was
different from the real world incidence of cancers. This
study was a case–control study, and as such, was not
reflective of performance in real world. Finally, despite
the broad range of cancer types captured in this study,
for some cancer types the sample size was small, pre-
cluding a full representation of heterogeneity within
some cancer types.

Taken together, this retrospective study demon-
strates that OncoSeek, a blood-based MCED test, is
significantly superior to the conventional clinical
method based on MSCV in the detection of multiple
cancer types, with a high specificity and provides accu-
rate TOO prediction that may inform patients’ clinical
management. The nine cancer types studied here ac-
count for ∼59.2% of global cancer deaths in 2020,1 and
the majority of cancer types currently lack clinical
screening tests, so their earlier detection could
conceivably reduce deaths from these cancers. The re-
sults also support that OncoSeek, as an MCED assay, is
also affordable (less than $25) and requires nothing
more than a blood draw, which makes it more practical
in LMICs.
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